A problem of Zarankiewicz

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More on a Problem of Zarankiewicz

We show tight necessary and sufficient conditions on the sizes of small bipartite graphs whose union is a larger bipartite graph that has no large bipartite independent set. Our main result is a common generalization of two classical results in graph theory: the theorem of Kővári, Sós and Turán on the minimum number of edges in a bipartite graph that has no large independent set, and the theore...

متن کامل

A contribution to the Zarankiewicz problem

Given positive integers m,n, s, t, let z (m,n, s, t) be the maximum number of ones in a (0, 1) matrix of size m× n that does not contain an all ones submatrix of size s× t. We show that if s ≥ 2 and t ≥ 2, then for every k = 0, . . . , s− 2, z (m,n, s, t) ≤ (s− k − 1) nm + kn+ (t− 1)m. This generic bound implies the known bounds of Kövari, Sós and Turán, and of Füredi. As a consequence, we also...

متن کامل

On Zarankiewicz Problem and Depth-Two Superconcentrators

We show tight necessary and sufficient conditions on the sizes of small bipartite graphs whose union is a larger bipartite graph that has no large bipartite independent set. Our main result is a common generalization of two classical results in graph theory: the theorem of Kővári, Sós and Turán on the minimum number of edges in a bipartite graph that has no large independent set, and the theore...

متن کامل

Spectral Extrema for Graphs: The Zarankiewicz Problem

Let G be a graph on n vertices with spectral radius λ (this is the largest eigenvalue of the adjacency matrix of G). We show that if G does not contain the complete bipartite graph Kt,s as a subgraph, where 2 6 t 6 s, then λ 6 (

متن کامل

On the Zarankiewicz Problem for Intersection Hypergraphs

Let d and t be fixed positive integers, and let K t,...,t denote the complete d-partite hypergraph with t vertices in each of its parts, whose hyperedges are the d-tuples of the vertex set with precisely one element from each part. According to a fundamental theorem of extremal hypergraph theory, due to Erdős [7], the number of hyperedges of a d-uniform hypergraph on n vertices that does not co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1975

ISSN: 0097-3165

DOI: 10.1016/0097-3165(75)90007-2